Indian Institute of Technology Roorkee MAI-101(Mathematics-I), Autumn Semester: 2024-25

Assignment-5: (Taylor's theorem, Maxima-Minima)

- 1. Let $f(x) = \sin x$. If $f(h) = f(0) + hf'(\theta h)$, $0 < \theta < 1$ then show that $\lim_{h \to 0} \theta = \frac{1}{\sqrt{3}}$.
- 2. Using Taylor's theorem, show that:
 - (a) $1 + x + \frac{x^2}{2} < e^x < 1 + x + \frac{x^2}{2} e^x$, x > 0
 - (b) $x \frac{x^3}{3!} < \sin x < x, \ x > 0$
 - (c) $1 + \frac{x}{2} \frac{x^3}{8} < \sqrt{1+x} < 1 + \frac{x}{2}, x > 0.$
- 3. Obtain the Taylor's series expansion of the maximum order for the function $f(x,y) = x^2y + 3y 2$ about the point (1, -2).
- 4. Obtain Taylor's expansion of $\tan^{-1} \frac{y}{x}$ about (1,1) up to second degree term. Hence compute f(1.1, 0.9).
- 5. Find the linear approximation of the following functions at point P_0 . Also, find the maximum absolute error in this approximation.
 - (a) $f(x,y) = 2x^2 xy + y^2 + 3x 4y + 1$ at $P_0 = (-1,1)$ and R: |x+1| < 0.1, |y-1| < 0.1. (b) $f(x,y) = x^2 xy + \frac{1}{2}y^2 + 3$ at $P_0 = (3,2)$ and R: |x-3| < 0.1, |y-2| < 0.1.
- 6. Use Taylor's formula to find a quadratic approximation of $f(x,y) = \sin x \sin y$ at the origin. How accurate is the approximation if $|x| \le 0.1$ and $|y| \le 0.1$?
- 7. Prove that the function $\left(\frac{1}{x}\right)^x$, x > 0 has a maximum at $x = e^{-1}$.
- 8. Examine the following functions for local extrema and saddle points:
 - (a) $xy x^2 y^2 2x 2y + 4$
 - (b) $x^3 + y^3 3axy$
 - (c) $x^2y^2 5x^2 8xy 5y^2$
 - (d) $2(x-y)^2 x^4 y^4$
- 9. Find the absolute maximum and minimum values of the following functions f(x,y) in the closed region R:
 - (a) $f(x,y) = 2 + 2x + 2y x^2 y^2$, R: triangular plate in the first quadrant bounded by the lines x = 0, y = 0, y = 9 - x.
 - (b) $f(x,y) = 3x^2 + y^2 x$, $R: 2x^2 + y^2 < 1$.
- 10. Find the extrema of the following functions using the method of Lagrange multipliers:
 - (a) f(x,y) = 3x + 4y subject to the condition $x^2 + y^2 = 1$.
 - (b) $f(x, y, z) = x^m y^n z^p$ subject to the condition x + y + z = a.
 - (c) f(x,y) = xy subject to the condition $\frac{x^2}{8} + \frac{y^2}{2} = 1$.
- 11. Prove that if the perimeter of a triangle is constant, its area is maximum when the triangle is equilateral.

- 12. Find the shortest distance from the point (1,2,-1) to the sphere $x^2 + y^2 + z^2 = 24$.
- 13. The plane x+y+z=1 cuts the cylinder $x^2+y^2=1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.
- 14. Find the quadratic approximation of $f(x,y) = \sqrt{1+4x^2+y^2}$ at (1,2) and use it to compute the approximate value of f(1.1, 2.05).
- 15. Find the maximum and minimum of $f(x,y) = (x+y)e^{-x^2-y^2}$ on the region defined by $x^2+y^2 \le 1$.

Answers

3.
$$f(x,y) = -10 - 4(x-1) + 4(y+2) - 2(x-1)^2 + 2(x-1)(y+2) + (x-1)^2(y+2)$$
.

4.
$$f(x,y) = \frac{\pi}{4} - \frac{1}{2}(x-1) + \frac{1}{2}(y-1) + \frac{1}{4}(x-1)^2 - \frac{1}{4}(y-1)^2$$
, 0.685.

5. (a)
$$f(x,y) = -2 - 2(x+1) - (y-1)$$
, $E(x,y) \le 0.08$.
(b) $f(x,y) = 8 + 4(x-3) - (y-2)$, $E(x,y) \le 0.04$.

(b)
$$f(x,y) = 8 + 4(x-3) - (y-2), E(x,y) \le 0.04$$

6.
$$f(x,y) = xy$$
, $E(x,y) \le 0.0013$.

- 8. (a) Maximum value 8 at (-2, -2).
 - (b) Maximum at (a,a) if a < 0, minimum at (a,a) if a > 0, and saddle point at (0,0).
 - (c) Maximum value 0 at (0,0), saddle point at $(\pm 1, \pm 1)$, $(\pm 3, \pm 3)$.
 - (d) Maximum value 8 at $(\pm\sqrt{2}, \mp\sqrt{2})$ and saddle point at (0,0).
 - (e) Saddle point at $(n\pi, 0)$ for $n \in I$.
- 9. (a) Absolute maximum value 4 at (1,1) and absolute minimum value -61 at (0,9) and (9,0).
 - (b) Absolute maximum value $\frac{3+\sqrt{2}}{2}$ at $(-1/\sqrt{2},0)$ and absolute minimum value -1/12 at (1/6,0).
- 10. (a) Maximum value 5 at (3/5, 4/5) and minimum value -5 at (-3/5, -4/5).
 - (b) $\frac{m^m n^n p^p a^{m+n+p}}{(m+n+p)^{m+n+p}}.$
 - (c) Maximum value 2 at $(\pm 2, \pm 1)$ and minimum value -2 at $(\mp 2, \pm 1)$.
- 12. $\sqrt{6}$.
- 13. $(-1/\sqrt{2}, -1/\sqrt{2}, 1+\sqrt{2})$ is farthest from the origin, (1,0,0) and (0,1,0) are closest to the origin.
- 14. 3.1691
- 15. Maximum value $\frac{1}{\sqrt{e}}$ at (1/2, 1/2) and minimum value $-\frac{1}{\sqrt{e}}$ at (-1/2, -1/2).