Indian Institute of Technology Roorkee

MAI-101: Mathematics I Autumn Semester 2024–2025 Assignment 8: (Applications of Multiple Integrals)

- 1. Find the area of the region included between the two cardioid $r = a(1 + cos\theta)$ and $r = a(1 cos\theta)$.
- 2. Find the area of that part of the cylinder $x^2 + y^2 = a^2$ which is cut out by the cylinder $x^2 + z^2 = a^2$.
- 3. Find the volume of a wedge intercepted between the cylinder $x^2 + y^2 = 2ax$ and the planes z = mx and z = nx (m > n).
- 4. Show that the volume of the solid obtained by revolving the cardioid $r = a(1 + \cos\theta)$ about the initial line is $\frac{8\pi a^3}{3}$.
- 5. Use cylindrical coordinates to compute the integral $\iiint_D z(x^2+y^2)^{-1/2}dxdydz$, where D is the solid bounded above by the plane z=2 and below by the surface $2z=x^2+y^2$.
- 6. The average value of a function f over a solid region D is defined as

$$\frac{1}{\text{vol. of. D}} \iiint_{D} f(x, y, z) dx dy dz.$$

Find the average value of f(x, y, z) = x + y + z over the sphere $x^2 + y^2 + z^2 = 4$.

- 7. Find the volume bounded above by the sphere $x^2 + y^2 + z^2 = 32$ and below by the paraboloid $x^2 + y^2 = 4z$.
- 8. Find the volume of the solid enclosed by the surfaces $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.
- 9. Find the volume bounded by the surfaces $z = 4 x^2 \frac{1}{4}y^2$ and $z = 3x^2 + \frac{y^2}{4}$.
- 10. Evaluate $\iiint z^2 dx dy dz$ over the region common to the sphere $x^2 + y^2 + z^2 = a^2$ and the cylinder $x^2 + y^2 = ax$.

1

- 11. Find the centre of mass of the area bounded by the parabola $y^2 = x$ and the line x + y = 2, treating the density as constant.
- 12. Find the centre of mass of one complete arc of the cycloid: x = a(t sint), y = a(1 - cost), treating the density as constant.
- 13. Find the mass of a plate in the shape of the curve $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$, the density being given by $\rho = \mu xy$.
- 14. A solid body of constant density ρ is obtained by revolving the cardioid r= $a(1+\cos\theta)$ about the initial line. Find its M.I. about a straight line through the pole and perpendicular to the initial line.

1.
$$\frac{a^2}{2}(3\pi - 8)$$

3.
$$(m-n)a^3\pi$$

$$5. \ \frac{32\pi}{5}$$

6. 0

Answers.
1.
$$\frac{a^2}{2}(3\pi - 8)$$
 2. $8a^2$ 3. $(m - n)a^3\pi$ 5. $\frac{32\pi}{5}$
7. $64\pi(\frac{4\sqrt{2}}{3} - \frac{7}{6})$ 8. $\frac{16a^3}{3}$ 9. $4\sqrt{2}\pi$ 10. $\frac{2}{15}a^5\pi$

8.
$$\frac{16a^3}{3}$$

9.
$$4\sqrt{2}\tau$$

10.
$$\frac{2}{15}a^57$$

11.
$$(\frac{8}{5}, -\frac{1}{2})$$

12.
$$(a\pi, \frac{4a}{3})$$

13.
$$\frac{\mu a^2 b^2}{20}$$

11.
$$(\frac{8}{5}, -\frac{1}{2})$$
 12. $(a\pi, \frac{4a}{3})$ 13. $\frac{\mu a^2 b^2}{20}$ 14. $\frac{352}{105} \rho a^5 \pi$.