Indian Institute of Technology Roorkee

MAI-101(Mathematics I)

Autumn Semester 2024–25

Assignment 6: (Multiple Integrals)

- 1. Sketch the region R in the xy-plane bounded by the curves $y^2 = 2x$ and y = x, and find its area.
- 2. Consider

$$f(x,y) = \frac{x-y}{(x+y)^3}; \quad 0 \le x \le 1, \ 0 \le y \le 1.$$

- (a) Evaluate the repeated integrals $\int_0^1 dx \int_0^1 f(x,y) dy$ and $\int_0^1 dy \int_0^1 f(x,y) dx$. (b) Comment on the existence of the double integral.
- 3. Evaluate the following integrals by interchanging the order of integration:

(a)
$$\int_0^1 \int_{4y}^4 e^{x^2} dx dy$$
.

(b)
$$\int_0^1 \int_{u^2}^1 (ye^{x^2}) dx dy$$
.

(c)
$$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$$

(d)
$$\int_0^8 \int_{y^{\frac{1}{3}}}^2 \sqrt{(x^4+1)} dx dy$$
.

(a)
$$\int_0^1 \int_{4y}^4 e^{x^2} dx dy$$
. (b) $\int_0^1 \int_{y^2}^1 (y e^{x^2}) dx dy$. (c) $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$. (d) $\int_0^8 \int_{y^{\frac{1}{3}}}^2 \sqrt{(x^4+1)} dx dy$. (e) $\int_0^3 \int_1^{\sqrt{4-y}} (x+y) dx dy$. (f) $\int_0^a \int_{\sqrt{ax}}^a \frac{y^2}{\sqrt{y^4-a^2x^2}} dy dx$.

- 4. Evaluate:
 - (a) $\int \int_D (4x+2)dA$, where D is a region enclosed by the curves $y=x^2$ and y=2x.
 - (b) $\iint_R [x+y] dA$, over the rectangle formed by the coordinate axes and the lines x=1,
- 5. Evaluate the following double integrals:
 - (a) $\iint_R (x^2 + y^2) dA$, where R is the region of the plane given by $x^2 + y^2 \le a^2$.

(b)
$$\int_0^1 \int_{\sqrt{3}y}^{\sqrt{4-y^2}} \sqrt{x^2 + y^2} dx dy$$
.

- 6. Show the followings by changing the order of integration:
 - (a) $\int_0^{\pi/2} \int_0^{2a\cos\theta} f(r,\theta) dr d\theta = \int_0^{2a} \int_0^{\cos^{-1}(r/2a)} f(r,\theta) d\theta dr$.
 - (b) $\int_0^{\pi/3} \int_{a \sec^2(\theta/2)}^{(8a/3)\cos\theta} f(r,\theta) dr d\theta = \left[\int_a^{4a/3} \int_0^{2\cos^{-1}(\sqrt{a/r})} + \int_{4a/3}^{8a/3} \int_0^{\cos^{-1}(3r/8a)} \right] f(r,\theta) d\theta dr.$
- 7. Prove that
 - (a) $\int_0^a \int_0^x \frac{f'(y)dydx}{\sqrt{(a-x)(x-y)}} = \pi(f(a) f(0)).$
 - (b) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{b dy dx}{(x^2 + u^2 + b^2)^{3/2} (x^2 + u^2 + a^2)^{1/2}} = \frac{2\pi}{a + b}$. (By changing into polar coordinates.)
- 8. Evaluate the following triple integrals:
 - (a) $\int \int \int_E 2x dV$, where E is the region under the plane 2x + 3y + z = 6 that lies in the
 - (b) $\iint \int \int_E \sqrt{3x^2 + 3z^2} dV$, where E is the solid bounded by $y = 2x^2 + 2z^2$ and the plane

- (c) $\int \int \int_E xyzdV$, where E is the solid bounded by the sphere of radius 2 in the first octant.
- (d) $\int \int \int_E dV$, where E is the solid bounded by the cylinder $x^2 + y^2 = 9$ and the planes z = 1 and x + z = 5.
- 9. Find the volume of the region bounded above by the paraboloid $z = 5 x^2 y^2$ and below by the paraboloid $z = 4x^2 + 4y^2$.
- 10. Evaluate the following integrals by changing the variables into cylindrical coordinates:
 - (a) $\int_0^4 \int_0^{\sqrt{16-x^2}} \int_0^{16-x^2-y^2} \sqrt{x^2+y^2} dz dy dx$.
 - (b) $\iint \int \int_E \sqrt{(x^2+y^2)} dV$, where E is the region lying above the xy-plane and below the cone $z=4-\sqrt{x^2+y^2}$.
 - (c) $\int \int \int_E dV$, where E is the region bounded above by the sphere $x^2 + y^2 + z^2 = a^2$ and below by the plane z = b, where a > b > 0.
- 11. By using spherical coordinates evaluate the following triple integrals:
 - (a) $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{1} dz dy dx$.
 - (b) $\int \int \int_E (x^2 + y^2 + z^2)^{\frac{1}{2}} dV$, where E is the region bounded by the plane z = 3 and the cone $z = \sqrt{x^2 + y^2}$.
 - (c) $\int \int \int_E (x^2 + y^2 + z^2)^{-\frac{3}{2}} dV$, where E is the region bounded by the spheres of radius 2 and 3.
- 12. Evaluate $\int \int_R (\frac{x-y}{x+y+2})^2 dx dy$, where R is the region bounded by the lines $x+y=\pm 1,\ x-y=\pm 1$. (Use the transformation $u=x+y,\ v=x-y$ and integrate over an appropriate region in uv-plane.)
- 13. Evaluate $\int \int_R (3x^2 + 14xy + 8y^2) dx dy$, where R is the region in the first quadrant bounded by the lines $y = -\frac{3}{2}x + 1$, $y = -\frac{3}{2}x + 3$, $y = -\frac{1}{4}x$ and $y = -\frac{1}{4}x + 1$, using the transformation u = 3x + 2y and v = x + 4y.
- 14. Evaluate $\int \int_R e^{x^2-y^2} dA$, where R is the region in the first quadrant bounded by $x^2-y^2=1, \ x^2-y^2=4, y=0$ and y=(3/5)x, by using the transformation $u=x^2-y^2$ and v=x+y.
- 15. Evaluate $\int_0^3 \int_0^4 \int_{x=\frac{y}{2}}^{x=\frac{y}{2}+1} (\frac{2x-y}{2} + \frac{z}{3}) dx dy dz$ by applying the transformation $u = \frac{2x-y}{2}, \ v = \frac{y}{2}, \ w = \frac{z}{3}$, and integrating over an appropriate region in uvw-plane.

Answers:

- 1. $\frac{2}{3}$.
- **2.** (a) $\frac{1}{2}$, $-\frac{1}{2}$. (b) Does not exist.
- **3.** (a) $\frac{1}{8}(e^{16}-1)$. (b) $\frac{1}{4}(e-1)$. (c) 1. (d) $\frac{1}{6}(17^{\frac{3}{2}}-1)$. (e) $\frac{241}{60}$. (f) $\frac{\pi a^2}{6}$.

4. (a) 8. (b) 3.

5. (a) $\frac{\pi a^4}{2}$. (b) $\frac{4\pi}{9}$.

8. (a) 9. (b) $\frac{256\sqrt{3} \pi}{15}$. (c) $\frac{4}{3}$. (d) 36π .

9. $\frac{5\pi}{2}$.

10. (a) $\frac{1024(\pi)}{15}$. (b) $\frac{64}{3}(2\pi)$. (c) $\frac{\pi}{3}(a^3 - 3a^2b + b^3)$.

11. (a) $\frac{\pi}{3}$, (b) $\frac{27\pi}{2}(2\sqrt{2}-1)$, (c) $4\pi \log(\frac{3}{2})$.

12. $\frac{2}{9}$. 13. $\frac{64}{5}$. 14. $\frac{\log 2}{2}(e^4 - e)$. 15. 12.